Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38534874

RESUMO

The proposed strategy for the extrusion of printable composite filaments follows the favourable association of biogenic hydroxyapatite (HA) and graphene nanoplatelets (GNP) as reinforcement materials for a poly(lactic acid) (PLA) matrix. HA particles were chosen in the <40 µm range, while GNP were selected in the micrometric range. During the melt-mixing incorporation into the PLA matrix, both reinforcement ratios were simultaneously modulated for the first time at different increments. Cylindrical composite pellets/test samples were obtained only for the mechanical and wettability behaviour evaluation. The Fourier-transformed infrared spectroscopy depicted two levels of overlapping structures due to the solid molecular bond between all materials. Scanning electron microscopy and surface wettability and mechanical evaluations vouched for the (1) uniform/homogenous dispersion/embedding of HA particles up to the highest HA/GNP ratio, (2) physical adhesion at the HA-PLA interface due to the HA particles' porosity, (3) HA-GNP bonding, and (4) PLA-GNP synergy based on GNP complete exfoliation and dispersion into the matrix.

2.
J Funct Biomater ; 15(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38248686

RESUMO

This study explores the potential utilization of walstromite (BaCa2Si3O9) as a foundational material for creating new bioceramics in the form of scaffolds through 3D printing technology. To achieve this objective, this study investigates the chemical-mineralogical, morphological, and structural characteristics, as well as the biological properties, of walstromite-based bioceramics. The precursor mixture for walstromite synthesis is prepared through the sol-gel method, utilizing pure reagents. The resulting dried gelatinous precipitate is analyzed through complex thermal analysis, leading to the determination of the optimal calcination temperature. Subsequently, the calcined powder is characterized via X-ray diffraction and scanning electron microscopy, indicating the presence of calcium and barium silicates, as well as monocalcium silicate. This powder is then employed in additive 3D printing, resulting in ceramic scaffolds. The specific ceramic properties of the scaffold, such as apparent density, absorption, open porosity, and compressive strength, are assessed and fall within practical use limits. X-ray diffraction analysis confirms the formation of walstromite as a single phase in the ceramic scaffold. In vitro studies involving immersion in simulated body fluid (SBF) for 7 and 14 days, as well as contact with osteoblast-like cells, reveal the scaffold's ability to form a phosphate layer on its surface and its biocompatibility. This study concludes that the walstromite-based ceramic scaffold exhibits promising characteristics for potential applications in bone regeneration and tissue engineering.

3.
Rom J Morphol Embryol ; 64(3): 437-442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867362

RESUMO

Especially in molars that may have sometimes aberrant additional root canals, the complexity of tooth internal morphology in individual cases sometimes does not match to admitted classification rules and underlines the risk of missed anatomy during the endodontic management. To our knowledge, a permanent mandibular second molar with independent five roots, three mesial and two distal, each of them harboring a single canal, was not yet reported. Despite the treatment difficulties this tooth could be successfully approached by using dental operative microscope and cone-beam computed tomography (CBCT) with small field of view. Though CBCT is not a routine imagistic examination, in case of atypical tooth anatomy aiming to establish adequate diagnosis and treatment plan, the successful clinical outcome prevails over the irradiation dose.


Assuntos
Mandíbula , Raiz Dentária , Humanos , Raiz Dentária/diagnóstico por imagem , Mandíbula/diagnóstico por imagem , Dente Molar/diagnóstico por imagem , Dente Molar/anatomia & histologia , Tomografia Computadorizada de Feixe Cônico/métodos , Cavidade Pulpar/diagnóstico por imagem
4.
Rom J Morphol Embryol ; 64(1): 49-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37128791

RESUMO

Bone graft materials are more and more frequently used in dentistry for improving the periodontal support and for creating a bone support favorable for the insertion of dental implants. The experimental study carried out on laboratory animals aimed to evaluate the biocompatibility and the manner of integration of an experimental bone augmentation material, based on hydroxyapatite (HAp), reinforced with titanium-based particles by comparison with a commercial synthetic graft material already existing on the profile market, also based on HAp. We noticed a common pattern of evolution, although there were differences related to the speed of new bone tissue formation and implicitly the morphological elements captured at the two moments of time. In the presence of both synthetic materials, ossification also begins from the center of the cavity at distance from the margins of the bone defect, with a common pattern with an appearance with the presence of osteon-like structures. The experimental material generally determined a more intense initial inflammatory reaction, followed by the generation of a repair bone tissue with a denser appearance but with a less uniform structure and a greater number of residual particles.


Assuntos
Implantes Dentários , Durapatita , Animais , Osseointegração , Titânio/química , Osteogênese , Osso e Ossos
6.
Polymers (Basel) ; 14(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559715

RESUMO

This study aims to assess the conversion degree and hardness behavior of two new commercial dental restorative composites that have been submitted to light curing in different environments (air and glycerin, respectively) at various distances from the light source (1 to 5 mm) and to better understand the influence of the preparation conditions of the restorative materials. Through FT-IR spectrometry, the crosslinking degree of the commercial restorative materials have been investigated and different conversion values were obtained (from ~17% to ~90%) but more importantly, it was shown that the polymerization environment exhibits a significant influence on the crosslinking degree of the resin-based composites especially for obtaining degrees of higher polymerization. Additionally, the mechanical properties of the restorative materials were studied using the nanoindentation technique showing that the nano-hardness behavior is strongly influenced not only by the polymerization lamp position, but also by the chemical structure of the materials and polymerization conditions. Thus, the nanoindentation results showed that the highest nano-hardness values (~0.86 GPa) were obtained in the case of the flowable C3 composite that contains BisEMA and UDMA as a polymerizable organic matrix when crosslinked at 1 mm distance from the curing lamp using glycerin as an oxygen-inhibitor layer.

7.
Materials (Basel) ; 15(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431457

RESUMO

The surface physico-chemistry of metallic implants governs their successful long-term functionality for orthopedic and dentistry applications. Here, we investigated the feasibility of harmoniously combining two of the star materials currently employed in bone treatment/restoration, namely, calcium-phosphate-based bioceramics (in the form of coatings that have the capacity to enhance osseointegration) and titanium alloys (used as bulk implant materials due to their mechanical performance and lack of systemic toxicity). For the first time, bovine-bone-derived hydroxyapatite (BHA) was layered on top of Ti6Al4V substrates using powder injection laser cladding technology, and then subjected, in this first stage of the research, to an array of physical-chemical analyses. The laser processing set-up involved the conjoined modulation of the BHA-to-Ti ratio (100 wt.% and 50 wt.%) and beam power range (500-1000 W). As such, on each metallic substrate, several overlapped strips were produced and the external surface of the cladded coatings was further investigated. The morphological and compositional (SEM/EDS) evaluations exposed fully covered metallic surfaces with ceramic-based materials, without any fragmentation and with a strong metallurgical bond. The structural (XRD, micro-Raman) analyses showed the formation of calcium titanate as the main phase up to maximum 800 W, accompanied by partial BHA decomposition and the consequential advent of tetracalcium phosphate (markedly above 600 W), independent of the BHA ratio. In addition, the hydrophilic behavior of the coatings was outlined, being linked to the varied surface textures and phase dynamism that emerged due to laser power increment for both of the employed BHA ratios. Hence, this research delineates a series of optimal laser cladding technological parameters for the adequate deposition of bioceramic layers with customized functionality.

8.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234548

RESUMO

As bone diseases and defects are constantly increasing, the improvement of bone regeneration techniques is constantly evolving. The main purpose of this scientific study was to obtain and investigate biomaterials that can be used in tissue engineering. In this respect, nanocomposite inks of GelMA modified with hydroxyapatite (HA) substituted with Mg and Zn were developed. Using a 3D bioprinting technique, scaffolds with varying shapes and dimensions were obtained. The following analyses were used in order to study the nanocomposite materials and scaffolds obtained by the 3D printing technique: Fourier transform infrared spectrometry and X-ray diffraction (XRD), scanning electron microscopy (SEM), and micro-computed tomography (Micro-CT). The swelling and dissolvability of each scaffold were also studied. Biological studies, osteopontin (OPN), and osterix (OSX) gene expression evaluations were confirmed at the protein levels, using immunofluorescence coupled with confocal microscopy. These findings suggest the positive effect of magnesium and zinc on the osteogenic differentiation process. OSX fluorescent staining also confirmed the capacity of GelMA-HM5 and GelMA-HZ5 to support osteogenesis, especially of the magnesium enriched scaffold.

9.
J Funct Biomater ; 13(4)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36278649

RESUMO

Mesoporous bioactive glass nanoparticles (MBGNs) are widely recognized for their ability to bond to hard tissue, while the ions released from the BG structure enhance specific cellular pathways. In this study, the SiO2-P2O5-CaO-MgO-ZnO system was used to successfully synthesize MBGNs by a microemulsion-assisted sol-gel method. The MBGNs calcinated at 600 °C/3 h had a typical phosphosilicate structure together with a poorly crystalline hydroxyapatite (HAp). The addition of ZnO not only led to a higher degree of crystallinity of HAp but also induced a higher porosity of the particles. All MBGNs had a mesoporous structure with an interconnected network of slit shape pores. For each type of composition, two families of highly dispersed spherical nanoparticles could be identified. In vitro tests in simulated body fluid (SBF) proved that after only 3 days of immersion all the materials were covered with a layer of brushite whose degree of crystallinity decreases in the presence of Zn2+. The antibacterial assay revealed a strong inhibitory effect for all samples after 40 h of contact. Simultaneously, MBGNs did not increase the intracellular oxidative stress while it stimulated the cell proliferation process.

10.
J Funct Biomater ; 13(4)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36278668

RESUMO

The intersection of the bone tissue reconstruction and additive manufacturing fields promoted the advancement to a prerequisite and new feedstock resource for high-performance bone-like-scaffolds manufacturing. In this paper, the proposed strategy was directed toward the use of bovine-bone-derived hydroxyapatite (HA) for surface properties enhancement and mechanical features reinforcement of the poly(lactic acid) matrix for composite filaments extrusion. The involvement of completely naturally derived materials in the technological process was based on factors such as sustainability, low cost, and a facile and green synthesis route. After the HA isolation and extraction from bovine bones by thermal processing, milling, and sorting, two dependent parameters­the HA particles size (<40 µm, <100 µm, and >125 µm) and ratio (0−50% with increments of 10%)­were simultaneously modulated for the first time during the incorporation into the polymeric matrix. The resulting melt mixtures were divided for cast pellets and extruded filaments development. Based on the obtained samples, the study was further designed to examine several key features by complementary surface−volume characterization techniques. Hence, the scanning electron microscopy and micro-CT results for all specimens revealed a uniform and homogenous dispersion of HA particles and an adequate adhesion at the ceramic/polymer interface, without outline pores, sustained by the shape and surface features of the synthesized ceramic particles. Moreover, an enhanced wettability (contact angle in the ~70−21° range) and gradual mechanical takeover were indicated once the HA ratio increased, independent of the particles size, which confirmed the benefits and feasibility of evenly blending the natural ceramic/polymeric components. The results correlation led to the selection of optimal technological parameters for the synthesis of adequate composite filaments destined for future additive manufacturing and biomedical applications.

11.
Materials (Basel) ; 15(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35955357

RESUMO

For more than five decades, alkali niobate-based materials (KxNa1-xNbO3) have been one of the most promising lead-free piezoelectric materials researched to be used in electronics, photocatalysis, energy storage/conversion and medical applications, due to their important health and environmentally friendly nature. In this paper, our strategy was to synthetize the nearest reproductible composition to KxNa1-xNbO3 (KNN) with x = 0.5, placed at the limit of the morphotropic phase boundary (MPB) with the presence of both polymorphic phases, orthorhombic and tetragonal. The wet synthesis route was chosen to make the mix crystal powders, starting with the suspension preparation of Nb2O5 powder and KOH and NaOH alkaline solutions. Hydrothermal microwave-assisted maturation (HTMW), following the parameter variation T = 200-250 °C, p = 47-60 bar and dwelling time of 30-90 min, was performed. All powders therefore synthesized were entirely KxN1-xNbO3 solid solutions with x = 0.06-0.69, and the compositional, elemental, structural and morphological characterization highlighted polycrystalline particle assemblage with cubic and prismatic morphology, with sizes between 0.28 nm and 2.95 µm and polymorphic O-T phase coexistence, and a d33 piezoelectric constant under 1 pC/N of the compacted unsintered and unpoled discs were found.

12.
J Funct Biomater ; 13(2)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35645259

RESUMO

Dental pulp vitality preservation in dental caries treatment is a major goal in odontotherapy. The main objective of this study was to compare dental pulp tissue responses to vital therapies in deep carious lesions, using different calcium-based materials. An ambispective study was conducted on 47 patients. Ninety-five teeth with deep carious lesions were treated. Among them, 25 (26.32%) were diagnosed with pulpal exposures and treated by direct pulp capping. Indirect pulp capping was applied when pulp exposure was absent (n = 70; 73.68%). Fifty teeth (52.63%) were treated with TheraCal LC (prospective study), 31 teeth (32.63%) with Calcimol LC, and 14 teeth (14.74%) with Life Kerr AC (retrospective study). The results show that the survival rate for dental pulp was 100% for Life Kerr AC, 92% for TheraCal LC, and 83.87% for Calcimol LC, without significant differences. Apparently, self-setting calcium hydroxide material provided better dental pulp response than the two light-cured materials, regardless of their composition, that is, either calcium -hydroxide or calcium silicate-based. We will need a significant number of long-term clinical studies with the highest levels of evidence to determine the most adequate biomaterials for vital pulp therapies.

13.
Materials (Basel) ; 14(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885448

RESUMO

The tremendous technological and dental material progress led to a progressive advancement of treatment technologies and materials in restorative dentistry and prosthodontics. In this approach, CAD/CAM restorations have proven to be valuable restorative dental materials in both provisional and definitive restoration, owing to multifarious design, improved and highly tunable mechanical, physical and morphological properties. Thus far, the dentistry market offers a wide range of CAD/CAM restorative dental materials with highly sophisticated design and proper characteristics for a particular clinical problem or multiple dentistry purposes. The main goal of this research study was to comparatively investigate the micro-mechanical properties of various CAD/CAM restorations, which are presented on the market and used in clinical dentistry. Among the investigated dental specimens, hybrid ceramic-based CAD/CAM presented the highest micro-mechanical properties, followed by CAD/CAM PMMA-graphene, while the lowest micro-mechanical features were registered for CAD/CAM multilayered PMMA.

14.
Nanomaterials (Basel) ; 11(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578603

RESUMO

This research focused on the synthesis of apatite, starting from a natural biogenic calcium source (egg-shells) and its chemical and morpho-structural characterization in comparison with two commercial xenografts used as a bone substitute in dentistry. The synthesis route for the hydroxyapatite powder was the microwave-assisted hydrothermal technique, starting from annealed egg-shells as the precursor for lime and di-base ammonium phosphate as the phosphate precursor. The powders were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), X-ray fluorescence spectroscopy (XRF), and cytotoxicity assay in contact with amniotic fluid stem cell (AFSC) cultures. Compositional and structural similarities or differences between the powder synthesized from egg-shells (HA1) and the two commercial xenograft powders-Bio-Oss®, totally deproteinized cortical bovine bone, and Gen-Os®, partially deproteinized porcine bone-were revealed. The HA1 specimen presented a single mineral phase as polycrystalline apatite with a high crystallinity (Xc 0.92), a crystallite size of 43.73 nm, preferential growth under the c axes (002) direction, where it mineralizes in bone, a nano-rod particle morphology, and average lengths up to 77.29 nm and diameters up to 21.74 nm. The surface of the HA1 nanoparticles and internal mesopores (mean size of 3.3 ± 1.6 nm), acquired from high-pressure hydrothermal maturation, along with the precursor's nature, could be responsible for the improved biocompatibility, biomolecule adhesion, and osteoconductive abilities in bone substitute applications. The cytotoxicity assay showed a better AFSC cell viability for HA1 powder than the commercial xenografts did, similar oxidative stress to the control sample, and improved results compared with Gen-Os. The presented preliminary biocompatibility results are promising for bone tissue regeneration applications of HA1, and the study will continue with further tests on osteoblast differentiation and mineralization.

15.
Materials (Basel) ; 14(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33922963

RESUMO

A successful bone-graft-controlled healing entails the development of novel products with tunable compositional and architectural features and mechanical performances and is, thereby, able to accommodate fast bone in-growth and remodeling. To this effect, graphene nanoplatelets and Luffa-fibers were chosen as mechanical reinforcement phase and sacrificial template, respectively, and incorporated into a hydroxyapatite and brushite matrix derived by marble conversion with the help of a reproducible technology. The bio-products, framed by a one-stage-addition polymer-free fabrication route, were thoroughly physico-chemically investigated (by XRD, FTIR spectroscopy, SEM, and nano-computed tomography analysis, as well as surface energy measurements and mechanical performance assessments) after sintering in air or nitrogen ambient. The experiments exposed that the coupling of a nitrogen ambient with the graphene admixing triggers, in both compact and porous samples, important structural (i.e., decomposition of ß-Ca3(PO4)2 into α-Ca3(PO4)2 and α-Ca2P2O7) and morphological modifications. Certain restrictions and benefits were outlined with respect to the spatial porosity and global mechanical features of the derived bone scaffolds. Specifically, in nitrogen ambient, the graphene amount should be set to a maximum 0.25 wt.% in the case of compact products, while for the porous ones, significantly augmented compressive strengths were revealed at all graphene amounts. The sintering ambient or the graphene addition did not interfere with the Luffa ability to generate 3D-channels-arrays at high temperatures. It can be concluded that both Luffa and graphene agents act as adjuvants under nitrogen ambient, and that their incorporation-ratio can be modulated to favorably fit certain foreseeable biomedical applications.

16.
J Funct Biomater ; 12(1)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673093

RESUMO

The bone remodeling field has shifted focus towards the delineation of products with two main critical attributes: internal architectures capable to promote fast cell colonization and good mechanical performance. In this paper, Luffa-fibers and graphene nanoplatelets were proposed as porogen template and mechanical reinforcing agent, respectively, in view of framing 3D products by a one-stage polymer-free process. The ceramic matrix was prepared through a reproducible technology, developed for the conversion of marble resources into calcium phosphates (CaP) powders. After the graphene incorporation (by mechanical and ultrasonication mixing) into the CaP matrix, and Luffa-fibers addition, the samples were evaluated in both as-admixed and thermally-treated form (compact/porous products) by complementary structural, morphological, and compositional techniques. The results confirmed the benefits of the two agents' addition upon the compact products' micro-porosity and the global mechanical features, inferred by compressive strength and elastic modulus determinations. For the porous products, overall optimal results were obtained at a graphene amount of <1 wt.%. Further, no influence of graphene on fibers' ability to generate at high temperatures internal interconnected-channels-arrays was depicted. Moreover, its incorporation led to a general preservation of structural composition and stability for both the as-admixed and thermally-treated products. The developed CaP-reinforced structures sustain the premises for prospective non- and load-bearing biomedical applications.

17.
Rom J Morphol Embryol ; 62(3): 785-792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35263407

RESUMO

This study aimed to assess the in vitro biocompatibility of titanium (Ti) alloy orthodontic mini-implants by correlating human osteoblasts (HOb) response with chemical composition and surface morphology of mini-implants. HOb were cultivated with or without custom-made and commercial mini-implants, discs and filings. The surface morphology and chemical composition of the implants were assessed under the scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis system. Cell viability, adhesion and proliferation were analyzed by optical microscopy and flow cytometry. 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) reduction and lactate dehydrogenase (LDH) release tests were used to assess the cytotoxicity of discs and filings-treated culture medium. Shape, adhesion, and multiplication of HOb were not significantly altered by the presence of mini-implants, discs or filings in culture, even though Ti alloy may exert in vitro a low cytotoxic effect on HOb adhered to discs. Morphology analysis by SEM demonstrated that custom-made mini-implants' surface differs from that of commercial mini-screws in terms of surface finish and roughness, whilst EDX analysis showed largely similar percentages of Ti, aluminum and vanadium for the two types of implants. No major differences were noticed regarding the effect exerted in vitro on HOb by the investigated implants. The new mini-implants have a convenient in vitro cytotoxicity profile on HOb.


Assuntos
Implantes Dentários , Procedimentos de Ancoragem Ortodôntica , Humanos , Microscopia Eletrônica de Varredura , Osteoblastos , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
18.
J Funct Biomater ; 11(4)2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203117

RESUMO

Calcium phosphates (CPs) used as biomaterials have been intensively studied in recent years. In most studies, the determination of the chemical composition is mandatory. Due to the versatility and possibilities of performing qualitative and quantitative compositional analyses, energy dispersive spectrometry (EDS) is a widely used technique in this regard. The range of calcium phosphates is very diverse, the first method of approximating the type of compound being EDS microanalysis, by assessing the atomic Ca/P ratio. The value of this ratio can be influenced by several factors correlated with instrumental parameters and analysed samples. This article highlights the influence of the electron beam acceleration voltage (1 kV-30 kV) and of the particle size of calcium phosphate powders on the EDS analysis results. The characterised powders were obtained from bovine bones heat-treated at 1200 °C for 2 h, which have been ground and granulometrically sorted by mechanical vibration. The granulometric sorting generated three types of samples, with particle sizes < 20 µm, < 40 µm and < 100 µm, respectively. These were morphologically and dimensionally analysed by scanning electron microscopy (SEM) and compositionally by EDS, after the spectrometer was calibrated with a standard reference material (SRM) from NIST (National Institute of Standards and Technology). The results showed that the adjusting of acceleration voltage and of the powder particle size significantly influences the spectrum profile and the results of EDS analyses, which can lead to an erroneous primary identification of the analysed calcium phosphate type.

19.
Polymers (Basel) ; 12(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092270

RESUMO

The bioactivity of scaffolds represents a key property to facilitate the bone repair after orthopedic trauma. This study reports the development of biomimetic paste-type inks based on wollastonite (CS) and fish gelatin (FG) in a mass ratio similar to natural bone, as an appealing strategy to promote the mineralization during scaffold incubation in simulated body fluid (SBF). High-resolution 3D scaffolds were fabricated through 3D printing, and the homogeneous distribution of CS in the protein matrix was revealed by scanning electron microscopy/energy-dispersive X-ray diffraction analysis (SEM/EDX) micrographs. The bioactivity of the scaffold was suggested by an outstanding mineralization capacity revealed by the apatite layers deposited on the scaffold surface after immersion in SBF. The biocompatibility was demonstrated by cell proliferation established by MTT assay and fluorescence microscopy images and confirmed by SEM micrographs illustrating cell spreading. This work highlights the potential of the bicomponent inks to fabricate 3D bioactive scaffolds and predicts the osteogenic properties for bone regeneration applications.

20.
Materials (Basel) ; 13(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936228

RESUMO

This article presents a facile synthesis method used to obtain new composite films based on polylactic acid and micro-structured hydroxyapatite particles. The composite films were synthesized starting from a polymeric solution in chloroform (12 wt.%) in which various concentrations of hydroxyapatite (1, 2, and 4 wt.% related to polymer) were homogenously dispersed using ultrasonication followed by solvent evaporation. The synthesized composite films were morphologically (through SEM and atomic force microscopy (AFM)) and structurally (through FT-IR and Raman spectroscopy) characterized. The thermal behavior of the composite films was also determined. The SEM and AFM analyses showed the presence of micro-structured hydroxyapatite particles in the film's structure, as well as changes in the surface morphology. There was a significant decrease in the crystallinity of the composite films compared to the pure polymer, this being explained by a decrease in the arrangement of the polymer chains and a concurrent increase in the degree of their clutter. The presence of hydroxyapatite crystals did not have a significant influence on the degradation temperature of the composite film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...